The brain scans of high school football and hockey players showed subtle injury -- even if they did not suffer a concussion -- after taking routine hits to the head during the normal course of play, according to a University of Rochester Medical Center study.
The research, reported online in the journal Magnetic Resonance Imaging, is preliminary, involving a small sample of athletes, but nonetheless raises powerful questions about the consequences of the mildest head injury among youths with developing brains, said lead author Jeffrey Bazarian, M.D., M.P.H., associate professor of Emergency Medicine at URMC with a special interest in sports concussions.
Bazarian and colleagues used a cutting edge statistical approach to analyze before-and-after images of the players' brains from diffusion tensor imaging (DTI). A DTI scan is similar to an MRI but it does not relay pictures, rather it captures and relays quantitative data that must be decoded and interpreted.
Collaborators and co-authors Tong Zhu, Ph.D., and Jianhui Zhong, Ph.D., uniquely applied a novel (wild bootstrap) statistical method to the DTI imaging study and detected the small but noteworthy changes in the white matter of the teenagers.
"Although this was a very small study, if confirmed it could have broad implications for youth sports," Bazarian said. "The challenge is to determine whether a critical number of head hits exists above which this type of brain injury appears, and then to get players and coaches to agree to limit play when an athlete approached that number."
Nine athletes and six people in a control group from Rochester, N.Y., volunteered to take part in the research during the 2006-2007 sports season. Among the nine athletes, only one was diagnosed with a sports-related concussion that season, but six others sustained many sub-concussive blows and showed abnormalities on their post-season DTI scans that were closer to the concussed brain than to the normal brains in the control group.
The imaging changes also strongly correlated with the number of head hits (self-reported in a diary), the symptoms experienced, and independent of cognitive test results, Bazarian said.
The URMC study is unique because it was able to compare brain scans from the same player, pre-season and post-season. Most other studies compare the injured brain of one person to the normal brain of another person from a control group. However, that becomes a problem when searching for very subtle changes, Bazarian said, because so much natural variation exists in every individual's brain.
Read more: http://www.sciencedaily.com/releases/2011/11/111114133738
No comments:
Post a Comment