Saturday, January 14, 2012

Diet Counts: Iron Intake in Teen Years Can Impact Brain in Later Life


Editorial note: Be careful...only use iron with your doctor's guidance! Iron overdose can be fatal.




Iron is a popular topic in health news. Doctors prescribe it for medical reasons, and it's available over the counter as a dietary supplement. And while it's known that too little iron can result in cognitive problems, it's also known that too much promotes neurodegenerative diseases.
Now, researchers at UCLA have found that in addition to causing cognitive problems, a lack of iron early in life can affect the brain's physical structure as well.
UCLA neurology professor Paul Thompson and his colleagues measured levels of transferrin, a protein that transports iron throughout the body and brain, in adolescents and discovered that these transferrin levels were related to detectable differences in both the brain's macro-structure and micro-structure when the adolescents reached young adulthood.
The researchers also identified a common set of genes that influences both transferrin levels and brain structure. The discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment and neurodegeneration, they said.
Their findings appear in the current online edition of the journalProceedings of the National Academy of Sciences.
Iron and the proteins that transport it are critically important for brain function. Iron deficiency is the most common nutritional deficiency worldwide, causing poor cognitive achievement in school-aged children. Yet later in life, iron overload is associated with damage to the brain, and abnormally high iron concentrations have been found in the brains of patients with Alzheimer's, Parkinson's and Huntington diseases.
Since both a deficiency and an excess of iron can negatively impact brain function, the body's regulation of iron transport to the brain is crucial. When iron levels are low, the liver produces more transferrin for increased iron transport. The researchers wanted to know whether brain structure in healthy adults was also dependent on transferrin levels.
"We found that healthy brain wiring in adults depended on having good iron levels in your teenage years," said Thompson, a member of UCLA's Laboratory of Neuro Imaging. "This connection was a lot stronger than we expected, especially as we were looking at people who were young and healthy -- none of them would be considered iron-deficient.

No comments: